对本书的赞誉
前言
如何使用本书
资源与支持
主要符号表
第1章深度学习简介1
1.1起源2
1.2发展4
1.3成功案例6
1.4特点7
小结8
练习8
第2章预备知识9
2.1获取和运行本书的代码9
2.1.1获取代码并安装运行环境9
2.1.2更新代码和运行环境11
2.1.3使用GPU版的MXNet11
小结12
练习12
2.2数据操作12
2.2.1创建NDArray12
2.2.2运算14
2.2.3广播机制16
2.2.4索引17
2.2.5运算的内存开销17
2.2.6NDArray和NumPy相互变换18
小结19
练习19
2.3自动求梯度19
2.3.1简单例子19
2.3.2训练模式和预测模式20
2.3.3对Python控制流求梯度20
小结21
练习21
2.4查阅文档21
2.4.1查找模块里的所有函数和类21
2.4.2查找特定函数和类的使用22
2.4.3在MXNet网站上查阅23
小结24
练习24
第3章深度学习基础25
3.1线性回归25
3.1.1线性回归的基本要素25
3.1.2线性回归的表示方法28
小结30
练习30
3.2线性回归的从零开始实现30
3.2.1生成数据集30
3.2.2读取数据集32
3.2.3初始化模型参数32
3.2.4定义模型33
3.2.5定义损失函数33
3.2.6定义优化算法33
3.2.7训练模型33
小结34
练习34
3.3线性回归的简洁实现35
3.3.1生成数据集35
3.3.2读取数据集35
3.3.3定义模型36
3.3.4初始化模型参数36
3.3.5定义损失函数37
3.3.6定义优化算法37
3.3.7训练模型37
小结38
练习38
3.4softmax回归38
3.4.1分类问题38
3.4.2softmax回归模型39
3.4.3单样本分类的矢量计算表达式40
3.4.4小批量样本分类的矢量计算表达式40
3.4.5交叉熵损失函数41
3.4.6模型预测及评价42
小结42
练习42
3.5图像分类数据集(Fashion-MNIST)42
3.5.1获取数据集42
3.5.2读取小批量44
小结45
练习45
3.6softmax回归的从零开始实现45
3.6.1读取数据集45
3.6.2初始化模型参数45
3.6.3实现softmax运算46
3.6.4定义模型46
3.6.5定义损失函数47
3.6.6计算分类准确率47
3.6.7训练模型48
3.6.8预测48
小结49
练习49
3.7softmax回归的简洁实现49
3.7.1读取数据集49
3.7.2定义和初始化模型50
3.7.3softmax和交叉熵损失函数50
3.7.4定义优化算法50
3.7.5训练模型50
小结50
练习50
3.8多层感知机51
3.8.1隐藏层51
3.8.2激活函数52
3.8.3多层感知机55
小结55
练习55
3.9多层感知机的从零开始实现56
3.9.1读取数据集56
3.9.2定义模型参数56
3.9.3定义激活函数56
3.9.4定义模型56
3.9.5定义损失函数57
3.9.6训练模型57
小结57
练习57
3.10多层感知机的简洁实现57
3.10.1定义模型58
3.10.2训练模型58
小结58
练习58
3.11模型选择、欠拟合和过拟合58
3.11.1训练误差和泛化误差59
3.11.2模型选择59
3.11.3欠拟合和过拟合60
3.11.4多项式函数拟合实验61
小结65
练习65
3.12权重衰减65
3.12.1方法65
3.12.2高维线性回归实验66
3.12.3从零开始实现66
3.12.4简洁实现68
小结70
练习70
3.13丢弃法70
3.13.1方法70
3.13.2从零开始实现71
3.13.3简洁实现73
小结74
练习74
3.14正向传播、反向传播和计算图74
3.14.1正向传播74
3.14.2正向传播的计算图75
3.14.3反向传播75
3.14.4训练深度学习模型76
小结77
练习77
3.15数值稳定性和模型初始化77
3.15.1衰减和爆炸77
3.15.2随机初始化模型参数78
小结78
练习79
3.16实战Kaggle比赛:房价预测79
3.16.1Kaggle比赛79
3.16.2读取数据集80
3.16.3预处理数据集81
3.16.4训练模型82
3.16.5k折交叉验证82
3.16.6模型选择83
3.16.7预测并在Kaggle提交结果84
小结85
练习85
第4章深度学习计算86
4.1模型构造86
4.1.1继承Block类来构造模型86
4.1.2Sequential类继承自Block类87
4.1.3构造复杂的模型88
小结89
练习90
4.2模型参数的访问、初始化和共享90
4.2.1访问模型参数90
4.2.2初始化模型参数92
4.2.3自定义初始化方法93
4.2.4共享模型参数94
小结94
练习94
4.3模型参数的延后初始化95
4.3.1延后初始化95
4.3.2避免延后初始化96
小结96
练习97
4.4自定义层97
4.4.1不含模型参数的自定义层97
4.4.2含模型参数的自定义层98
小结99
练习99
4.5读取和存储99
4.5.1读写NDArray99
4.5.2读写Gluon模型的参数100
小结101
练习101
4.6GPU计算101
4.6.1计算设备102
4.6.2NDArray的GPU计算102
4.6.3Gluon的GPU计算104
小结105
练习105
第5章卷积神经网络106
5.1二维卷积层106
5.1.1二维互相关运算106
5.1.2二维卷积层107
5.1.3图像中物体边缘检测108
5.1.4通过数据学习核数组109
5.1.5互相关运算和卷积运算109
5.1.6特征图和感受野110
小结110
练习110
5.2填充和步幅111
5.2.1填充111
5.2.2步幅112
小结113
练习113
5.3多输入通道和多输出通道114
5.3.1多输入通道114
5.3.2多输出通道115
5.3.31x1卷积层116
小结117
练习117
5.4池化层117
5.4.1二维最大池化层和平均池化层117
5.4.2填充和步幅119
5.4.3多通道120
小结120
练习121
5.5卷积神经网络(LeNet)121
5.5.1LeNet模型121
5.5.2训练模型122
小结124
练习124
5.6深度卷积神经网络(AlexNet)124
5.6.1学习特征表示125
5.6.2AlexNet126
5.6.3读取数据集127
5.6.4训练模型128
小结128
练习129
5.7使用重复元素的网络(VGG)129
5.7.1VGG块129
5.7.2VGG网络129
5.7.3训练模型130
小结131
练习131
5.8网络中的网络(NiN)131
5.8.1NiN块131
5.8.2NiN模型132
5.8.3训练模型133
小结134
练习134
5.9含并行连结的网络(GoogLeNet)134
5.9.1Inception块134
5.9.2GoogLeNet模型135
5.9.3训练模型137
小结137
练习137
5.10批量归一化138
5.10.1批量归一化层138
5.10.2从零开始实现139
5.10.3使用批量归一化层的LeNet140
5.10.4简洁实现141
小结142
练习142
5.11残差网络(ResNet)143
5.11.1残差块143
5.11.2ResNet模型145
5.11.3训练模型146
小结146
练习146
5.12稠密连接网络(DenseNet)147
5.12.1稠密块147
5.12.2过渡层148
5.12.3DenseNet模型148
5.12.4训练模型149
小结149
练习149
第6章循环神经网络150
6.1语言模型150
6.1.1语言模型的计算151
6.1.2n元语法151
小结152
练习152
6.2循环神经网络152
6.2.1不含隐藏状态的神经网络152
6.2.2含隐藏状态的循环神经网络152
6.2.3应用:基于字符级循环神经网络的语言模型154
小结155
练习155
6.3语言模型数据集(歌词)155
6.3.1读取数据集155
6.3.2建立字符索引156
6.3.3时序数据的采样156
小结158
练习159
6.4循环神经网络的从零开始实现159
6.4.1one-hot向量159
6.4.2初始化模型参数160
6.4.3定义模型160
6.4.4定义预测函数161
6.4.5裁剪梯度161
6.4.6困惑度162
6.4.7定义模型训练函数162
6.4.8训练模型并创作歌词163
小结164
练习164
6.5循环神经网络的简洁实现165
6.5.1定义模型165
6.5.2训练模型166
小结168
练习168
6.6通过时间反向传播168
6.6.1定义模型168
6.6.2模型计算图169
6.6.3方法169
小结170
练习170
6.7门控循环单元(GRU)170
6.7.1门控循环单元171
6.7.2读取数据集173
6.7.3从零开始实现173
6.7.4简洁实现175
小结176
练习176
6.8长短期记忆(LSTM)176
6.8.1长短期记忆176
6.8.2读取数据集179
6.8.3从零开始实现179
6.8.4简洁实现181
小结181
练习182
6.9深度循环神经网络182
小结183
练习183
6.10双向循环神经网络183
小结184
练习184
第7章优化算法185
7.1优化与深度学习185
7.1.1优化与深度学习的关系185
7.1.2优化在深度学习中的挑战186
小结188
练习189
7.2梯度下降和随机梯度下降189
7.2.1一维梯度下降189
7.2.2学习率190
7.2.3多维梯度下降191
7.2.4随机梯度下降193
小结194
练习194
7.3小批量随机梯度下降194
7.3.1读取数据集195
7.3.2从零开始实现196
7.3.3简洁实现198
小结199
练习199
7.4动量法200
7.4.1梯度下降的问题200
7.4.2动量法201
7.4.3从零开始实现203
7.4.4简洁实现205
小结205
练习205
7.5AdaGrad算法206
7.5.1算法206
7.5.2特点206
7.5.3从零开始实现208
7.5.4简洁实现209
小结209
练习209
7.6RMSProp算法209
7.6.1算法210
7.6.2从零开始实现211
7.6.3简洁实现212
小结212
练习212
7.7AdaDelta算法212
7.7.1算法212
7.7.2从零开始实现213
7.7.3简洁实现214
小结214
练习214
7.8Adam算法215
7.8.1算法215
7.8.2从零开始实现216
7.8.3简洁实现216
小结217
练习217
第8章计算性能218
8.1命令式和符号式混合编程218
8.1.1混合式编程取两者之长220
8.1.2使用HybridSequential类构造模型220
8.1.3使用HybridBlock类构造模型222
小结224
练习224
8.2异步计算224
8.2.1MXNet中的异步计算224
8.2.2用同步函数让前端等待计算结果226
8.2.3使用异步计算提升计算性能226
8.2.4异步计算对内存的影响227
小结229
练习229
8.3自动并行计算229
8.3.1CPU和GPU的并行计算230
8.3.2计算和通信的并行计算231
小结231
练习231
8.4多GPU计算232
8.4.1数据并行232
8.4.2定义模型233
8.4.3多GPU之间同步数据234
8.4.4单个小批量上的多GPU训练236
8.4.5定义训练函数236
8.4.6多GPU训练实验237
小结237
练习237
8.5多GPU计算的简洁实现237
8.5.1多GPU上初始化模型参数238
8.5.2多GPU训练模型239
小结241
练习241
第9章计算机视觉242
9.1图像增广242
9.1.1常用的图像增广方法243
9.1.2使用图像增广训练模型246
小结250
练习250
9.2微调250
热狗识别251
小结255
练习255
9.3目标检测和边界框255
边界框256
小结257
练习257
9.4锚框257
9.4.1生成多个锚框257
9.4.2交并比259
9.4.3标注训练集的锚框260
9.4.4输出预测边界框263
小结265
练习265
9.5多尺度目标检测265
小结268
练习268
9.6目标检测数据集(皮卡丘)268
9.6.1获取数据集269
9.6.2读取数据集269
9.6.3图示数据270
小结270
练习271
9.7单发多框检测(SSD)271
9.7.1定义模型271
9.7.2训练模型275
9.7.3预测目标277
小结278
练习278
9.8区域卷积神经网络(R-CNN)系列280
9.8.1R-CNN280
9.8.2Fast R-CNN281
9.8.3Faster R-CNN283
9.8.4Mask R-CNN284
小结285
练习285
9.9语义分割和数据集285
9.9.1图像分割和实例分割285
9.9.2Pascal VOC2012语义分割数据集286
小结290
练习290
9.10全卷积网络(FCN)290
9.10.1转置卷积层291
9.10.2构造模型 292
9.10.3初始化转置卷积层294
9.10.4读取数据集295
9.10.5训练模型296
9.10.6预测像素类别296
小结297
练习297
9.11样式迁移298
9.11.1方法 298
9.11.2读取内容图像和样式图像 299
9.11.3预处理和后处理图像 300
9.11.4抽取特征 301
9.11.5定义损失函数 302
9.11.6创建和初始化合成图像 303
9.11.7训练模型 304
小结306
练习306
9.12实战Kaggle比赛:图像分类(CIFAR-10)306
9.12.1获取和整理数据集 307
9.12.2图像增广 310
9.12.3读取数据集 310
9.12.4定义模型 311
9.12.5定义训练函数 312
9.12.6训练模型 312
9.12.7对测试集分类并在Kaggle
提交结果313
小结313
练习313
9.13实战Kaggle比赛:狗的品种识别(ImageNetDogs)314
小结320
练习320
第10章自然语言处理321
10.1词嵌入(word2vec)321
小结325
练习325
10.2近似训练325
小结327
练习328
10.3word2vec的实现328
小结336
练习336
10.4子词嵌入(fastText)336
小结337
练习337
10.5全局向量的词嵌入(GloVe)337
小结340
练习340
10.6求近义词和类比词340
小结343
练习343
10.7文本情感分类:使用循环神经网络343
小结347
练习347
10.8文本情感分类:使用卷积神经网络(textCNN)347
小结353
练习353
10.9编码器-解码器(seq2seq)353
小结355
练习355
10.10束搜索355
小结358
练习358
10.11注意力机制358
小结361
练习361
10.12机器翻译361
小结369
练习369
附录A数学基础370
附录B使用Jupyter记事本376
附录C使用AWS运行代码381
附录DGPU购买指南388
附录E如何为本书做贡献391
附录Fd2lzh包索引395
附录G中英文术语对照表397
参考文献402
索引407
第 一部分 强化学习基础
第 1 章 初探强化学习 2
1.1 简介 2
1.2 什么是强化学习 2
1.3 强化学习的环境 4
1.4 强化学习的目标 4
1.5 强化学习中的数据 5
1.6 强化学习的独特性 6
1.7 小结 6
第 2 章 多臂老虎机问题 7
2.1 简介 7
2.2 问题介绍 7
2.2.1 问题定义 7
2.2.2 形式化描述 8
2.2.3 累积懊悔 8
2.2.4 估计期望奖励 8
2.3 探索与利用的平衡 10
2.4 -贪婪算法 11
2.5 上置信界算法 14
2.6 汤普森采样算法 16
2.7 小结 18
2.8 参考文献 18
第 3 章 马尔可夫决策过程 19
3.1 简介 19
3.2 马尔可夫过程 19
3.2.1 随机过程 19
3.2.2 马尔可夫性质 19
3.2.3 马尔可夫过程 20
3.3 马尔可夫奖励过程 21
3.3.1 回报 21
3.3.2 价值函数 22
3.4 马尔可夫决策过程 24
3.4.1 策略 25
3.4.2 状态价值函数 25
3.4.3 动作价值函数 25
3.4.4 贝尔曼期望方程 25
3.5 蒙特卡洛方法 28
3.6 占用度量 31
3.7 最优策略 32
3.8 小结 33
3.9 参考文献 33
第 4 章 动态规划算法 34
4.1 简介 34
4.2 悬崖漫步环境 34
4.3 策略迭代算法 36
4.3.1 策略评估 36
4.3.2 策略提升 36
4.3.3 策略迭代 37
4.4 价值迭代算法 40
4.5 冰湖环境 42
4.6 小结 45
4.7 扩展阅读:收敛性证明 45
4.7.1 策略迭代 45
4.7.2 价值迭代 45
4.8 参考文献 46
第 5 章 时序差分算法 47
5.1 简介 47
5.2 时序差分 48
5.3 Sarsa 算法 48
5.4 多步 Sarsa 算法 53
5.5 Q-learning 算法 56
5.6 小结 60
5.7 扩展阅读:Q-learning 收敛性证明 61
5.8 参考文献 62
第 6 章 Dyna-Q 算法 63
6.1 简介 63
6.2 Dyna-Q 63
6.3 Dyna-Q 代码实践 64
6.4 小结 69
6.5 参考文献 69
第二部分 强化学习进阶
第 7 章 DQN算法 72
7.1 简介 72
7.2 车杆环境 72
7.3 DQN 73
7.3.1 经验回放 74
7.3.2 目标网络 74
7.4 DQN代码实践 75
7.5 以图像作为输入的DQN算法 79
7.6 小结 80
7.7 参考文献 80
第 8 章 DQN改进算法 81
8.1 简介 81
8.2 Double DQN 81
8.3 Double DQN代码实践 82
8.4 Dueling DQN 88
8.5 Dueling DQN代码实践 90
8.6 小结 93
8.7 扩展阅读:对Q值过高估计的定量分析 93
8.8 参考文献 94
第 9 章 策略梯度算法 95
9.1 简介 95
9.2 策略梯度 95
9.3 REINFORCE 96
9.4 REINFORCE代码实践 97
9.5 小结 100
9.6 扩展阅读:策略梯度证明 100
9.7 参考文献 102
第 10 章 Actor-Critic算法 103
10.1 简介 103
10.2 Actor-Critic 103
10.3 Actor-Critic代码实践 105
10.4 小结 108
10.5 参考文献 108
第 11 章 TRPO算法 109
11.1 简介 109
11.2 策略目标 109
11.3 近似求解 111
11.4 共轭梯度 112
11.5 线性搜索 112
11.6 广义优势估计 113
11.7 TRPO代码实践 114
11.8 小结 122
11.9 参考文献 123
第 12 章 PPO算法 124
12.1 简介 124
12.2 PPO-惩罚 124
12.3 PPO-截断 125
12.4 PPO代码实践 125
12.5 小结 131
12.6 参考文献 132
第 13 章 DDPG算法 133
13.1 简介 133
13.2 DDPG 133
13.3 DDPG代码实践 135
13.4 小结 140
13.5 扩展阅读:确定性策略梯度定理的证明 140
13.6 参考文献 141
第 14 章 SAC算法 142
14.1 简介 142
14.2 最大熵强化学习 142
14.3 Soft策略迭代 143
14.4 SAC 143
14.5 SAC代码实践 145
14.6 小结 154
14.7 参考文献 155
第三部分 强化学习前沿
第 15 章 模仿学习 158
15.1 简介 158
15.2 行为克隆 159
15.3 生成对抗模仿学习 159
15.4 代码实践 160
15.4.1 生成专家数据 160
15.4.2 行为克隆的代码实践 163
15.4.3 生成对抗模仿学习的代码实践 165
15.5 小结 167
15.6 参考文献 168
第 16 章 模型预测控制 169
16.1 简介 169
16.2 打靶法 169
16.2.1 随机打靶法 170
16.2.2 交叉熵方法 170
16.3 PETS算法 171
16.4 PETS算法实践 172
16.5 小结 179
16.6 参考文献 179
第 17 章 基于模型的策略优化 180
17.1 简介 180
17.2 MBPO算法 180
17.3 MBPO代码实践 181
17.4 小结 192
17.5 拓展阅读:MBPO理论分析 192
17.5.1 性能提升的单调性保障 192
17.5.2 模型推演长度 192
17.6 参考文献 193
第 18 章 离线强化学习 194
18.1 简介 194
18.2 批量限制 Q-learning算法 195
18.3 保守 Q-learning算法 197
18.4 CQL代码实践 199
18.5 小结 208
18.6 扩展阅读 208
18.7 参考文献 210
第 19 章 目标导向的强化学习 211
19.1 简介 211
19.2 问题定义 211
19.3 HER算法 212
19.4 HER代码实践 213
19.5 小结 221
19.6 参考文献 221
第 20 章 多智能体强化学习入门 222
20.1 简介 222
20.2 问题建模 223
20.3 多智能体强化学习的基本求解范式 223
20.4 IPPO算法 223
20.5 IPPO代码实践 224
20.6 小结 228
20.7 参考文献 229
第 21 章 多智能体强化学习进阶 230
21.1 简介 230
21.2 MADDPG算法 230
21.3 MADDPG代码实践 232
21.4 小结 240
21.5 参考文献 240
总结与展望 241
总结 241
展望:克服强化学习的落地挑战 241
中英文术语对照表与符号表 244
中英文术语对照表 244
符号表 246
第 一部分 机器学习基础
第 1 章 初探机器学习 2
1 1 人工智能的“两只手和四条腿” 2
1 2 机器学习是什么 2
1 3 时代造就机器学习的盛行 4
1 4 泛化能力:机器学习奏效的本质 5
1 5 归纳偏置:机器学习模型的“天赋” 6
1 6 机器学习的限制 7
1 7 小结 7
第 2 章 机器学习的数学基础 8
2 1 向量 8
2 2 矩阵 10
2 2 1 矩阵的基本概念 10
2 2 2 矩阵运算 11
2 2 3 矩阵与线性方程组12
2 2 4 矩阵范数 13
2 3 梯度 14
2 4 凸函数 17
2 5 小结 19
第 3 章 k近邻算法 20
3 1 KNN算法的原理 20
3 2 用KNN算法完成分类任务 21
3 3 使用scikit-learn实现KNN算法 24
3 4 用KNN算法完成回归任务--色彩风格迁移 25
3 4 1 RGB空间与LAB空间 27
3 4 2 算法设计 27
3 5 小结 30
第 4 章 线性回归 33
4 1 线性回归的映射形式和学习目标 33
4 2 线性回归的解析方法 35
4 3 动手实现线性回归的解析方法 35
4 4 使用sklearn中的线性回归模型 37
4 5 梯度下降算法 38
4 6 学习率对迭代的影响 42
4 7 小结 44
第 5 章 机器学习的基本思想 46
5 1 欠拟合与过拟合 46
5 2 正则化约束 49
5 3 输入特征与相似度 52
5 4 参数与超参数 55
5 5 数据集划分与交叉验证 56
5 6 小结 57
5 7 扩展阅读:贯穿恒等式的证明 58
5 8 参考文献 58
第二部分 参数化模型
第 6 章 逻辑斯谛回归 60
6 1 逻辑斯谛函数下的线性模型 61
6 2 最大似然估计 62
6 3 分类问题的评价指标 64
6 4 动手实现逻辑斯谛回归 69
6 5 使用sklearn中的逻辑斯谛回归模型 73
6 6 交叉熵与最大似然估计 74
6 7 小结 76
6 8 扩展阅读:广义线性模型 78
6 9 参考文献 79
第 7 章 双线性模型 80
7 1 矩阵分解 81
7 2 动手实现矩阵分解模型 83
7 3 因子分解机 86
7 4 动手实现因子分解机模型 89
7 5 小结 92
7 6 扩展阅读:概率矩阵分解 93
7 7 参考文献 95
第 8 章 神经网络与多层感知机 96
8 1 人工神经网络 96
8 2 感知机 97
8 3 隐含层与多层感知机 99
8 4 反向传播 102
8 5 动手实现多层感知机 104
8 6 用PyTorch库实现多层感知机 110
8 7 小结 113
8 8 参考文献 114
第 9 章 卷积神经网络 115
9 1 卷积 115
9 2 神经网络中的卷积 117
9 3 用卷积神经网络完成图像分类任务 119
9 4 用预训练的卷积神经网络完成色彩风格迁移 126
9 4 1 VGG网络 126
9 4 2 内容表示与风格表示 127
9 5 小结 134
9 6 扩展阅读:数据增强 134
9 7 参考文献 136
第 10 章 循环神经网络 137
10 1 循环神经网络的基本原理 137
10 2 门控循环单元 139
10 3 动手实现GRU 141
10 4 小结 146
10 5 参考文献 147
第三部分 非参数化模型
第 11 章 支持向量机 150
11 1 支持向量机的数学描述 150
11 2 序列最小优化 153
11 3 动手实现SMO求解SVM 156
11 4 核函数 158
11 5 sklearn中的SVM工具 162
11 6 小结 163
11 7 扩展阅读:SVM对偶问题的推导 164
第 12 章 决策树 167
12 1 决策树的构造 168
12 2 ID3算法与C4 5算法 171
12 3 CART算法 172
12 4 动手实现C4 5算法的决策树 175
12 4 1 数据集处理 175
12 4 2 C4 5算法的实现 178
12 5 sklearn中的决策树 182
12 6 小结 183
12 7 参考文献 184
第 13 章 集成学习与梯度提升决策树 185
13 1 自举聚合与随机森林 186
13 2 集成学习器 191
13 3 提升算法 194
13 3 1 适应提升 195
13 3 2 梯度提升 200
13 4 小结 205
13 5 参考文献 206
第四部分 无监督模型
第 14 章 k均值聚类 208
14 1 k均值聚类算法的原理 208
14 2 动手实现k均值算法 209
14 3 k-means++算法 212
14 4 小结 214
14 5 参考文献 215
第 15 章主成分分析 216
15 1 主成分与方差 216
15 2 利用特征分解进行PCA 218
15 3 动手实现PCA算法 221
15 4 用sklearn实现PCA算法222
15 5 小结 223
第 16 章 概率图模型 225
16 1 贝叶斯网络 226
16 2 最大后验估计 228
16 3 用朴素贝叶斯模型完成文本分类 231
16 4 马尔可夫网络 234
16 5 用马尔可夫网络完成图像去噪 236
16 6 小结 240
16 7 参考文献 241
第 17 章 EM算法 242
17 1 高斯混合模型的EM算法 243
17 2 动手求解GMM来拟合数据分布 245
17 3 一般情况下的EM算法 251
17 4 EM算法的收敛性 253
17 5 小结 254
第 18 章 自编码器 255
18 1 自编码器的结构 256
18 2 动手实现自编码器 257
18 3 小结 262
18 4 参考文献 262
总结与展望264
总结 264
展望 264
中英文术语对照表 267
第 1章 初探自然语言处理 1
1.1 自然语言处理是什么 1
1.2 自然语言处理的应用 2
1.3 自然语言处理的难点 3
1.4 自然语言处理的方法论 4
1.5 小结 5
第 一部分 基础
第 2章 文本规范化 8
2.1 分词 8
2.1.1 基于空格与标点符号的分词 8
2.1.2 基于正则表达式的分词 9
2.1.3 词间不含空格的语言的分词 12
2.1.4 基于子词的分词 13
2.2 词规范化 17
2.2.1 大小写折叠 17
2.2.2 词目还原 18
2.2.3 词干还原 19
2.3 分句 19
2.4 小结 20
第3章 文本表示 22
3.1 词的表示 22
3.2 稀疏向量表示 24
3.3 稠密向量表示 25
3.3.1 word2vec 25
3.3.2 上下文相关词嵌入 30
3.4 文档表示 30
3.4.1 词-文档共现矩阵 31
3.4.2 TF-IDF加权 31
3.4.3 文档的稠密向量表示 33
3.5 小结 33
第4章 文本分类 35
4.1 基于规则的文本分类 35
4.2 基于机器学习的文本分类 36
4.2.1 朴素贝叶斯 36
4.2.2 逻辑斯谛回归 42
4.3 分类结果评价 45
4.4 小结 47
第5章 文本聚类 49
5.1 k均值聚类算法 49
5.2 基于高斯混合模型的最大期望值算法 53
5.2.1 高斯混合模型 53
5.2.2 最大期望值算法 53
5.3 无监督朴素贝叶斯模型 57
5.4 主题模型 60
5.5 小结 61
第二部分 序列
第6章 语言模型 64
6.1 概述 64
6.2 n元语法模型 66
6.3 循环神经网络 67
6.3.1 循环神经网络 67
6.3.2 长短期记忆 73
6.3.3 多层双向循环神经网络 76
6.4 注意力机制 80
多头注意力 83
6.5 Transformer模型 85
6.6 小结 91
第7章 序列到序列模型 93
7.1 基于神经网络的序列到序列模型 93
7.1.1 循环神经网络 94
7.1.2 注意力机制 96
7.1.3 Transformer 98
7.2 学习 101
7.3 解码 106
7.3.1 贪心解码 106
7.3.2 束搜索解码 107
7.3.3 其他解码问题与解决技巧 110
7.4 指针网络 111
7.5 序列到序列任务的延伸 112
7.6 小结 113
第8章 预训练语言模型 114
8.1 ELMo:基于语言模型的上下文相关词嵌入 114
8.2 BERT:基于Transformer的双向编码器表示 115
8.2.1 掩码语言模型 115
8.2.2 BERT模型 116
8.2.3 预训练 116
8.2.4 微调与提示 117
8.2.5 BERT代码演示 117
8.2.6 BERT模型扩展 121
8.3 GPT:基于Transformer的生成式预训练语言模型 122
8.3.1 GPT模型的历史 122
8.3.2 GPT-2训练演示 123
8.3.3 GPT的使用 125
8.4 基于编码器-解码器的预训练语言模型 128
8.5 基于HuggingFace的预训练语言模型使用 129
8.5.1 文本分类 129
8.5.2 文本生成 130
8.5.3 问答 130
8.5.4 文本摘要 131
8.6 小结 131
第9章 序列标注 133
9.1 序列标注任务 133
9.1.1 词性标注 133
9.1.2 中文分词 134
9.1.3 命名实体识别 134
9.1.4 语义角色标注 135
9.2 隐马尔可夫模型 135
9.2.1 模型 135
9.2.2 解码 136
9.2.3 输入序列的边际概率 137
9.2.4 单个标签的边际概率 138
9.2.5 监督学习 139
9.2.6 无监督学习 139
9.2.7 部分代码实现 141
9.3 条件随机场 146
9.3.1 模型 146
9.3.2 解码 147
9.3.3 监督学习 148
9.3.4 无监督学习 149
9.3.5 部分代码实现 149
9.4 神经序列标注模型 154
9.4.1 神经softmax 154
9.4.2 神经条件随机场 154
9.4.3 代码实现 155
9.5 小结 156
第三部分 结构
第 10章 成分句法分析 160
10.1 成分结构 160
10.2 成分句法分析概述 161
10.2.1 歧义性与打分 161
10.2.2 解码 162
10.2.3 学习 162
10.2.4 评价指标 163
10.3 基于跨度的成分句法分析 163
10.3.1 打分 164
10.3.2 解码 165
10.3.3 学习 170
10.4 基于转移的成分句法分析 173
10.4.1 状态与转移 173
10.4.2 转移的打分 174
10.4.3 解码 175
10.4.4 学习 176
10.5 基于上下文无关文法的成分句法分析 177
10.5.1 上下文无关文法 177
10.5.2 解码和学习 178
10.6 小结 179
第 11章 依存句法分析 181
11.1 依存结构 181
11.1.1 投射性 182
11.1.2 与成分结构的关系 182
11.2 依存句法分析概述 184
11.2.1 打分、解码和学习 184
11.2.2 评价指标 184
11.3 基于图的依存句法分析 185
11.3.1 打分 185
11.3.2 解码 186
11.3.3 Eisner算法 186
11.3.4 MST算法 191
11.3.5 高阶方法 194
11.3.6 监督学习 194
11.4 基于转移的依存句法分析 195
11.4.1 状态与转移 196
11.4.2 打分、解码与学习 196
11.5 小结 198
第 12章 语义分析 200
12.1 显式和隐式的语义表示 200
12.2 词义表示 201
12.2.1 WordNet 201
12.2.2 词义消歧 203
12.3 语义表示 204
12.3.1 专用和通用的语义表示 204
12.3.2 一阶逻辑 205
12.3.3 语义图 205
12.4 语义分析 206
12.4.1 基于句法的语义分析 206
12.4.2 基于神经网络的语义分析 207
12.4.3 弱监督学习 209
12.5 语义角色标注 209
12.5.1 语义角色标注标准 209
12.5.2 语义角色标注方法 211
12.6 信息提取 211
12.7 小结 212
第 13章 篇章分析 213
13.1 篇章 213
13.1.1 连贯性关系 213
13.1.2 篇章结构 214
13.1.3 篇章分析 215
13.2 共指消解 215
13.2.1 提及检测 216
13.2.2 提及聚类 216
13.3 小结 220
总结与展望 221
参考文献 223
中英文术语对照表 228
附 录 234
对本书的赞誉
前言
译者简介
学习环境配置
资源与支持
主要符号表
第 1章 引言 1
1.1 日常生活中的机器学习 2
1.2 机器学习中的关键组件 3
1.2.1 数据 3
1.2.2 模型 4
1.2.3 目标函数 4
1.2.4 优化算法 5
1.3 各种机器学习问题 5
1.3.1 监督学习 5
1.3.2 无监督学习 11
1.3.3 与环境互动 11
1.3.4 强化学习 12
1.4 起源 13
1.5 深度学习的发展 15
1.6 深度学习的成功案例 16
1.7 特点 17
第 2章 预备知识 20
2.1 数据操作 20
2.1.1 入门 21
2.1.2 运算符 22
2.1.3 广播机制 23
2.1.4 索引和切片 24
2.1.5 节省内存 24
2.1.6 转换为其他Python对象 25
2.2 数据预处理 26
2.2.1 读取数据集 26
2.2.2 处理缺失值 26
2.2.3 转换为张量格式 27
2.3 线性代数 27
2.3.1 标量 28
2.3.2 向量 28
2.3.3 矩阵 29
2.3.4 张量 30
2.3.5 张量算法的基本性质 31
2.3.6 降维 32
2.3.7 点积 33
2.3.8 矩阵-向量积 33
2.3.9 矩阵-矩阵乘法 34
2.3.10 范数 35
2.3.11 关于线性代数的更多信息 36
2.4 微积分 37
2.4.1 导数和微分 37
2.4.2 偏导数 40
2.4.3 梯度 41
2.4.4 链式法则 41
2.5 自动微分 42
2.5.1 一个简单的例子 42
2.5.2 非标量变量的反向传播 43
2.5.3 分离计算 43
2.5.4 Python控制流的梯度计算 44
2.6 概率 44
2.6.1 基本概率论 45
2.6.2 处理多个随机变量 48
2.6.3 期望和方差 50
2.7 查阅文档 51
2.7.1 查找模块中的所有函数和类 51
2.7.2 查找特定函数和类的用法 52
第3章 线性神经网络 54
3.1 线性回归 54
3.1.1 线性回归的基本元素 54
3.1.2 向量化加速 57
3.1.3 正态分布与平方损失 58
3.1.4 从线性回归到深度网络 60
3.2 线性回归的从零开始实现 61
3.2.1 生成数据集 62
3.2.2 读取数据集 63
3.2.3 初始化模型参数 63
3.2.4 定义模型 64
3.2.5 定义损失函数 64
3.2.6 定义优化算法 64
3.2.7 训练 64
3.3 线性回归的简洁实现 66
3.3.1 生成数据集 66
3.3.2 读取数据集 66
3.3.3 定义模型 67
3.3.4 初始化模型参数 67
3.3.5 定义损失函数 68
3.3.6 定义优化算法 68
3.3.7 训练 68
3.4 softmax回归 69
3.4.1 分类问题 69
3.4.2 网络架构 70
3.4.3 全连接层的参数开销 70
3.4.4 softmax运算 71
3.4.5 小批量样本的向量化 71
3.4.6 损失函数 72
3.4.7 信息论基础 73
3.4.8 模型预测和评估 74
3.5 图像分类数据集 74
3.5.1 读取数据集 75
3.5.2 读取小批量 76
3.5.3 整合所有组件 76
3.6 softmax回归的从零开始实现 77
3.6.1 初始化模型参数 77
3.6.2 定义softmax操作 78
3.6.3 定义模型 78
3.6.4 定义损失函数 79
3.6.5 分类精度 79
3.6.6 训练 80
3.6.7 预测 82
3.7 softmax回归的简洁实现 83
3.7.1 初始化模型参数 83
3.7.2 重新审视softmax的实现 84
3.7.3 优化算法 84
3.7.4 训练 84
第4章 多层感知机 86
4.1 多层感知机 86
4.2 多层感知机的从零开始实现 92
4.3 多层感知机的简洁实现 94
模型 94
4.4 模型选择、欠拟合和过拟合 95
4.5 权重衰减 103
4.6 暂退法 108
4.7 前向传播、反向传播和计算图 112
4.8 数值稳定性和模型初始化 115
4.9 环境和分布偏移 119
4.10 实战Kaggle比赛:预测房价 127
第5章 深度学习计算 136
5.1 层和块 136
5.2 参数管理 141
5.3 延后初始化 145
实例化网络 146
5.4 自定义层 146
5.5 读写文件 148
5.6 GPU 150
第6章 卷积神经网络 155
6.1 从全连接层到卷积 155
6.2 图像卷积 159
6.3 填充和步幅 164
6.4 多输入多输出通道 166
6.5 汇聚层 170
6.6 卷积神经网络(LeNet) 173
第7章 现代卷积神经网络 178
7.1 深度卷积神经网络(AlexNet) 178
7.2 使用块的网络(VGG) 184
7.3 网络中的网络(NiN) 187
7.4 含并行连接的网络(GoogLeNet) 190
7.5 批量规范化 194
7.6 残差网络(ResNet) 200
7.7 稠密连接网络(DenseNet) 205
第8章 循环神经网络 209
8.1 序列模型 209
8.2 文本预处理 216
8.3 语言模型和数据集 219
8.4 循环神经网络 226
8.5 循环神经网络的从零开始实现 230
8.6 循环神经网络的简洁实现 237
8.7 通过时间反向传播 239
第9章 现代循环神经网络 244
9.1 门控循环单元(GRU) 244
9.2 长短期记忆网络(LSTM) 249
9.3 深度循环神经网络 254
9.4 双向循环神经网络 256
9.5 机器翻译与数据集 260
9.6 编码器-解码器架构 265
9.7 序列到序列学习(seq2seq) 267
9.8 束搜索 275
第 10章 注意力机制 278
10.1 注意力提示 278
10.2 注意力汇聚:Nadaraya-Watson 核回归 281
10.3 注意力评分函数 287
10.4 Bahdanau 注意力 291
10.5 多头注意力 295
10.6 自注意力和位置编码 298
10.7 Transformer 302
第 11章 优化算法 311
11.1 优化和深度学习 311
11.2 凸性 315
11.3 梯度下降 322
11.4 随机梯度下降 329
11.5 小批量随机梯度下降 334
11.6 动量法 341
11.7 AdaGrad算法 348
11.8 RMSProp算法 353
11.9 Adadelta算法 356
11.10 Adam算法 358
11.11 学习率调度器 361
第 12章 计算性能 369
12.1 编译器和解释器 369
12.2 异步计算 372
通过后端异步处理 373
12.3 自动并行 375
12.4 硬件 378
12.5 多GPU训练 388
12.6 多GPU的简洁实现 394
12.7 参数服务器 397
第 13章 计算机视觉 404
13.1 图像增广 404
13.2 微调 410
13.3 目标检测和边界框 415
13.4 锚框 417
13.5 多尺度目标检测 427
13.6 目标检测数据集 430
13.7 单发多框检测(SSD) 433
13.8 区域卷积神经网络(R-CNN)系列 441
13.9 语义分割和数据集 445
13.10 转置卷积 450
13.11 全卷积网络 453
13.12 风格迁移 458
13.13 实战 Kaggle竞赛:图像分类(CIFAR-10) 464
13.14 实战Kaggle竞赛:狗的品种识别(ImageNet Dogs) 470
第 14章 自然语言处理:预训练 476
14.1 词嵌入(word2vec) 477
14.2 近似训练 480
14.3 用于预训练词嵌入的数据集 482
14.4 预训练word2vec 488
14.5 全局向量的词嵌入(GloVe) 491
14.6 子词嵌入 494
14.7 词的相似度和类比任务 497
14.8 来自Transformer的双向编码器表示(BERT) 500
14.9 用于预训练BERT的数据集 507
14.10 预训练BERT 512
第 15章 自然语言处理:应用 515
15.1 情感分析及数据集 516
15.2 情感分析:使用循环神经网络 518
15.3 情感分析:使用卷积神经网络 521
15.4 自然语言推断与数据集 526
15.5 自然语言推断:使用注意力 530
15.6 针对序列级和词元级应用微调BERT 535
15.7 自然语言推断:微调BERT 538
附录A 深度学习工具 543
A.1 使用Jupyter记事本 543
A.1.1 在本地编辑和运行代码 543
A.1.2 高级选项 545
A.2 使用Amazon SageMaker 546
A.2.1 注册 547
A.2.2 创建SageMaker实例 547
A.2.3 运行和停止实例 548
A.2.4 更新Notebook 548
A.3 使用Amazon EC2实例 549
A.3.1 创建和运行EC2实例 549
A.3.2 安装CUDA 553
A.3.3 安装库以运行代码 553
A.3.4 远程运行Jupyter记事本 554
A.3.5 关闭未使用的实例 554
A.4 选择服务器和GPU 555
A.4.1 选择服务器 555
A.4.2 选择GPU 556
A.5 为本书做贡献 558
A.5.1 提交微小更改 558
A.5.2 大量文本或代码修改 559
A.5.3 提交主要更改 559
参考文献 562