本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正
知识图谱方法。系统阐述知识图谱的发展历史与基本概念,梳理知识图谱全生命周期技术,建立方法论思维。
知识图谱实践。囊括知识表示与建模、知识存储、知识抽取与挖掘、知识融合、知识推理、语义搜索、知识问答等,系统性介绍知识图谱技术。各章节提供典型开源工具实践案例,提供相关工具、实验数据及完整的操作说明。
知识图谱应用。结合电商、图情、生活娱乐、企业商业、创投、中医临床、金融等实际应用场景,详细介绍领域知识图谱的构建方法。
知识图谱是较为典型的多学科交叉领域,涉及知识工程、自然语言处理、机器学习、图数据库等多个领域。《知识图谱:方法、实践与应用》系统地介绍知识图谱涉及的关键技术,如知识建模、关系抽取、图存储、自动推理、图谱表示学习、语义搜索、知识问答、图挖掘分析等。此外,本书还尝试将学术前沿和实战结合,让读者在掌握实际应用能力的同时对前沿技术发展有所了解。
《知识图谱:方法、实践与应用》既适合计算机和人工智能相关的研究人员阅读,又适合在企业一线从事技术和应用开发的人员学习,还可作为高等院校计算机或人工智能专业师生的参考教材。
王昊奋,上海交通大学计算机博士。中文知识图谱zhishi.me创始人、OpenKG发起人之一、CCF理事、CCF术语审定工委主任、CCF TF执委、中文信息学会语言与知识计算专委会副秘书长、上海交通大学校友会AI分会秘书长。在知识图谱、问答系统和聊天机器人等诸多领域有丰富的研发经验。
漆桂林,东南大学计算机学院教授、东南大学认知智能研究所所长、南京柯基数据科技有限公司首席科学家、OpenKG发起人之一、中国中文信息学会语言与知识计算专业委员会副主任、中国科学技术情报学会知识组织专业委员会副主任、爱思唯尔(Elsevier)数据管理顾问委员会顾问、国际期刊 Journal of Data Intelligence 执行主编。科研成果在电力故障智能检测和知识推送、医药知识问答及网络安全态势感知系统等领域得到了实际应用。
陈华钧,浙江大学计算机科学与技术学院教授。浙江大学阿里巴巴知识引擎联合实验室负责人、浙江省大数据智能计算重点实验室副主任、中国人工智能学会知识工程与分布智能专业委员会副主任委员、中国中文信息学会语言与知识计算专业委员会副主任委员、OpenKG发起人。曾获国际语义网会议ISWC*佳论文奖。
这是一本系统性介绍知识图谱发展历史、技术体系与应用实践的书籍,无论是对于研究学者还是相关企业的工程师,都是一本不错的参考书。本质而言,知识图谱旨在从数据中识别、发现和推断事物之间的复杂关系,是事物关系的可计算模型。知识图谱代表万维网发展的一种理想,也是人工智能与互联网深度融合的产物。书中的内容基本上涵盖了目前知识图谱的各方面研究和工程进展,非常适合从事这个领域工作的年轻人阅读。
周明
国际计算语言学学会(ACL)会长,微软亚洲研究院副院长
人类已进入人工智能时代。所谓“智”指的是智慧,表现为知识;“能”指的是解决问题的能力,主要表现为基于知识的推理能力和运用知识解决问题的能力。因此,知识是智能的基础和核心,知识的建模、表示、获取、融合、推理、赋能等是人工智能及其相关应用的核心科学问题,知识图谱是其有效的技术实现手段。三位青年学者在知识图谱领域耕耘多年,无论是在科学研究,还是在技术开发和产业落地方面,都做了大量的工作,有着丰富的实战经验和心得体会。在本书中,三位青年学者将知识图谱涉及的各个技术方面做了详细的总结、介绍和展望,涵盖了知识图谱全生命周期中的各个环节和各项细节。
在人工智能时代,这是一本非常实用的有关知识图谱的技术参考书,也可作为高年级本科生和研究生的教科书。
张民
苏州大学特聘教授,国家杰出青年基金获得者,人类语言技术研究所所长
知识图谱有很多落地场景,包括语义搜索、个性化推荐、内容理解、个人助理、智能问答,并在诸如金融、医疗、客服、教育和政务等垂直领域都有工业级应用。从工业界的角度来看,我们更关注知识图谱技术在落地的时候能否满足用户需求,是否有比较良好的用户体验。本书的内容不仅有理论和算法,还包括了很多技术落地方面的实践和应用案例,可以帮助工程师在进行技术选型、尝试技术实现过程中少走弯路,快速上手。此外,本书的主要作者都是OpenKG的发起人和核心参与人员,具有丰富的理论知识和一线实践经验。同时,开放域知识图谱的构建对于推动各个领域的图谱应用都具有重要意义。因此,我非常高兴能将这本书以及OpenKG介绍给更多来自工业界的朋友们。
崔宝秋
小米集团副总裁,集团技术委员会主席