本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正
全面为机器学习提供数学基础:从线性代数的核心知识,到大规模矩阵计算,到低秩近似和特殊矩阵,再到统计基础和优化算法。
•延续Strang教材的一贯风格:内容丰富,深入浅出,透过技术外壳,直指本质内核。
•解释构建神经网络的基础知识和核心思想。
•包含丰富的应用背景介绍、参考文献及网络资源。
•每章含有练习和编程习题。
本书是深度学习的导论,全面介绍机器学习的数学基础,阐述架构神经网络的核心思想,主要内容包括线性代数的重点、大规模矩阵的计算、低秩与压缩传感、特殊矩阵、概率与统计、最优化、数据学习等。本书可作为数据科学方向的数学基础课程教材,也可供人工智能、深度学习领域的科研人员和工程技术人员参考。
吉尔伯特·斯特朗(Gilbert Strang),美国享有盛誉的数学家、教育家,在有限元理论、变分法、小波分析和线性代数等方面皆有研究贡献。他对数学教育做出了许多贡献,出版了十几部数学教科书和专著。曾任麻省理工学院数学系MathWorks讲座教授。主要讲授“线性代数导论”“计算科学与工程”等开放式课程,获得广泛好评,是美国数学开放教学的领军人物。曾任美国数学联合政策委员会主席、美国数学委员会主席、美国国家科学基金会(NSF)数学顾问小组主席、国际工业与应用数学理事会(ICIAM)理事、阿贝尔奖委员会委员等职务。2009年当选美国国家科学院院士。在麻省理工学院任教61年后,他开设的MIT 18.06课程(线性代数)在OCW(开放式课程)平台上浏览量超过1000万次。